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ABSTRACT

Determining the taxonomic affiliation of sequences
assembled from metagenomes remains a major
bottleneck that affects research across the fields of
environmental, clinical and evolutionary microbiology.
Here, we introduce MyTaxa, a homology-based bio-
informatics framework to classify metagenomic and
genomic sequences with unprecedented accuracy.
The distinguishing aspect of MyTaxa is that it
employs all genes present in an unknown sequence
as classifiers, weighting each gene based on its
(predetermined) classifying power at a given taxo-
nomic level and frequency of horizontal gene
transfer. MyTaxa also implements a novel classifica-
tion scheme based on the genome-aggregate average
amino acid identity concept todetermine the degree of
novelty of sequences representing uncharacterized
taxa, i.e. whether they represent novel species,
genera or phyla. Application of MyTaxa on in silico
generated (mock) and real metagenomes of varied
read length (100–2000 bp) revealed that it correctly
classified at least 5% more sequences than any other
tool. The analysis also showed that �10% of the
assembled sequences from human gut metagenomes
represent novel species with no sequenced represen-
tatives, several of which were highly abundant in situ
such as members of the Prevotella genus. Thus,
MyTaxa can find several important applications in mi-
crobial identification and diversity studies.

INTRODUCTION

Culture-independent whole-genome shotgun (WGS) DNA
sequencing has revolutionized the study of the diversity and
ecology of microbial communities during the last decade
(1,2). However, the tools to analyze metagenomic data
are clearly lagging behind the developments in sequencing
technologies, with the probable exception of tools for

sequence annotation and assembly (1,3–5). Perhaps most
importantly, the taxonomic identity of most sequences
assembled from a metagenomic dataset frequently
remains elusive, making the exchange of information
about an organism or a DNA sequence challenging when
a name for it is not available. This limitation severely
impedes communication among scientists and scientific dis-
covery across the fields of ecology, systematics, evolution,
engineering and medicine. The limitation is due, at least in
part, to the fact that the great majority of microbial species
in nature, >99% of the total in some habitats (6), resist
cultivation in the laboratory and thus, are not represented
by sequenced reference representatives that can aid taxo-
nomic identification. Single-cell techniques can potentially
overcome these limitations by providing the genome
sequence of uncultured organisms (7). However, these tech-
niques are not amenable to all organisms or habitats and
the 16S rRNA gene, which serves as the best marker for
taxonomic identification due to the availability of a large
database of 16S rRNA gene sequences from uncultured
organisms (8,9), is often missed or not assembled during
single-cell (and WGS metagenomic) approaches (10). The
16S rRNA gene also provides limited resolution at the
species level, which represents a major limitation for
epidemiological and micro-diversity studies (11). To
overcome these limitations, whole-genome-based
approaches and tools, comparable to those already avail-
able for the 16S rRNA gene, are highly needed. It is also
important for these tools to scale with the increasingly large
volume of sequence data produced by the new sequencers
and to be able to detect and categorize novel taxa, e.g.
determine if the taxa represent novel species or genera.
The previous methods to taxonomically identify

metagenomic sequences fall into two categories: compos-
ition-based, such as PhyloPythiaS and NBC (12,13); and
homology-based, such as CARMA3, SOrt-ITEMS, and
MEGAN4 (5,14,15). While composition-based methods do
not depend on the availability of a reference database for
homology search (althoughmost methods require a reference
database for algorithm training purposes) and are typically
faster to compute, their accuracy is usually significantly
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lower thanhomology-basedmethods, especially for regions of
the genome that are characterized by abnormal statistics
compared to the genome average, due, for instance, to hori-
zontal gene transfer (HGT) (16). On the other hand,
homology-based approaches such as those employing
BLAST (17) and HMMER3 (18) searches of assembled or
unassembled sequences against known reference database(s),
have become a nearly indispensible component of
metagenomic studies (4). Even naı̈ve implementations
of simple classification algorithms such as best hit (BH) or
lowest common ancestor (LCA) usually provide comparable
accuracies with some sophisticated composition-based
approaches (19). The main limitation of the homology-based
approaches is the lack of a comprehensive database of refer-
ence genome sequences. Accordingly, query sequences repre-
senting novel taxa provide only low-identity matches or no
matches to the reference sequences and, in a typical
metagenomic study, the majority of sequences cannot be ro-
bustlyclassified.Low-identitymatchesrepresentachallengeto
theidentificationofthedegreeofnoveltyofthequerysequence,
particularly for naı̈ve classifiers, which are based on pre-set,
and frequently arbitrary, thresholds. In such cases, a dynamic
approach that takes into account the level of identity of the
match and the classification power of the corresponding gene
or sequence (e.g. the 16S rRNA gene provides robust reso-
lution at the genus level and higher but poor resolution at the
species level) are advantageous. However, most, if not all, of
the dynamic approaches developed for these purposes rely on
some unrealistic assumptions such as that genes of the same
protein family are characterized by the same mutation rate
within different lineages (4,5,14).
Here we present a novel framework, MyTaxa, which over-

comes several of the previous limitations and can accurately
classify metagenomic and genomic sequences with low com-
putational requirements. MyTaxa considers all genes present
in an unknown (query) sequence as classifiers and quantifies
the classifying power of each gene using predetermined
weights. The weights are for (i) how well the gene in
question resolves the classification at a given taxonomic
level based on its degree of sequence conservation (e.g. 16S
rRNA gene example above), and (ii) how frequently the gene
phylogeny deviates from the species phylogeny due (primar-
ily) to HGT. Based on these weights and the top homology
matches of the genes in the query sequence against a pre-
clustered reference gene database, a maximum likelihood
analysis is performed to choose the most probable taxo-
nomic assignment and to decide the lowest taxonomic
rank for the query sequence. We show that MyTaxa signifi-
cantly outperforms state-of-the-art tools for the same
purposes in both sensitivity and specificity of the taxonomic
assignments and can easily incorporate additional reference
gene sequences as these become available through future
isolate genome and single-cell sequencing projects to
provide for a more comprehensive coverage.

MATERIALS AND METHODS

Overview of the MyTaxa algorithm and webserver

MyTaxa consists of two parts: the ‘offline’ and the ‘online’
part (Figure 1). The offline part refers to the construction

of an indexed database that contains the parameters
(weights) for gene clusters, which are employed in the
online part for taxonomic classification. The indexed
database is freely accessible for download and standalone
implementations at MyTaxa’s website, using the utility
script ‘download_db.py’. The database will be updated
at regular intervals (twice a year). The current version is
constructed using 8942 publicly available genomes in
NCBI (release 196).

For the online part, users can use either the
webserver (http://enve-omics.ce.gatech.edu/MyTaxa/) or
the standal-one version. In the webserver, users can start
MyTaxa analysis by supplying two files: (i) a standard
GFF file containing the genes predicted on the query se-
quences by gene prediction tools such as metaGeneMark,
Prodigal or FragGeneScan (20–22); and (ii) a tabular
output file from the similarity search of the predicted
gene sequences against the sequences used to construct
the database of gene weights or another database that
includes the GI accession number of the matching gene.
The similarity search can be performed using any search
tool that provides the sequence identity of the match such
as Blast, BLAT or USearch (17,23,24). The stand-alone
version uses the same input format as the webserver, and a
utility script ‘infile_convert.py’ is provided to generate the
appropriately formatted input file for MyTaxa form the
output of the similarity search file. Alternatively, if users
have only un-annotated assembled contig or genome
query sequences, a Python pipeline, ‘MyTaxa_prep.py’,
takes these sequences as input in a multi-fasta format
and performs gene calling, similarity search and
formatting to output files ready for MyTaxa analysis.
The output from MyTaxa is an XML file that supports
interactive visualization of query sequences compos-
ition by Krona (25) using utility script ‘MyTaxa.
distribution.pl’; for webserver users, the Krona visualiza-
tion is automatically generated (Figure 1). The following
sections explain in detail the offline and online parts of
MyTaxa, including the mathematical formulation, param-
eter selection and benchmarking.

Gene clustering

The predicted protein-coding genes of 2453 completed and
6489 drafted microbial genomes were downloaded from
NCBI’s FTP server (ftp.ncbi.nih.gov) in June 2013
(GenBank release 196). An all-versus-all search of all
genes was carried out using USearch (version 5.0; global
alignment algorithm with default settings) (23). Orthologs
were defined as the reciprocal best match (RBM) genes
between any two genomes, with percentage amino acid
identity (AAI) >40%, no >70% coverage of the length
of the shorter gene by the alignment, and e-value
<1� 10�12. Neo4j (www.neo4j.org) was subsequently
used to construct a graph in which the nodes were genes
and the edges were RBM relationships. Genes were
grouped into gene clusters based on the graph by an
agglomerative hierarchical clustering approach until all
connected components of the graph were found. Non-
RBM (paralog) genes were searched against the resulting
gene clusters using the same USearch search as described
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Figure 1. The workflow of the MyTaxa algorithm. (Top) Using MyTaxa involves two parts: (i) the construction of a database that contains the
weights for each gene cluster (offline part). The database is provided as part of the standalone implementation package of the algorithm. (ii) The user
supplies the query sequences and the results from a similarity search of the sequences against a database such as GenBank (online part). The user can
use either the webserver or the standalone implementation of MyTaxa (right). (Bottom) In the offline part, all genes from available complete or draft
genomes were grouped into clusters (box A), and the weights D (how well the gene resolves the taxonomic rank) and M (how consistent the gene
phylogeny is to the species phylogeny) were calculated for each cluster and taxonomic rank considered (i.e. phylum, genus and species). To quantify
D, the distances among all gene sequences of a gene cluster were calculated in a pair-wise mode and categorized into ‘intra-group’ (the two
corresponding genomes that encode the genes were assigned to the same taxon) and ‘inter-group’ (the two genomes were assigned to different
taxa). The larger the difference between the inter-group versus the intra-group identities, the larger the classifying power of the gene with respect to D
(an example of the distribution of identities is represented by the histogram shown in box B). To quantify M, all possible triplets from the
phylogenetic tree of all sequences of a gene cluster were extracted and compared with the species tree, the latter approximated by the AAI tree
(distance tree). Therefore, the triplets were either ‘concordant’ or ‘discordant’ with species tree (lower panel in box B). During the sequence
assignment (‘online’ part; Box C). MyTaxa takes the user input and maps the matches onto the reference gene clusters generated from the
offline part, based on the accession numbers of the (matching) genes from GenBank. The corresponding D and M weights are extracted for each
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above; genes with matches above the previous cut-off were
merged into the corresponding best-match gene cluster. In
total, 4 357 681 gene clusters (singletons included)
comprising 29 911 689 genes were obtained. This
approach was preferred over the clustering approach
offered by the USearch software because it was computa-
tionally more efficient and provided, in addition, the data
to calculate the AAI values among genomes (see below).

Genome-aggregate average AAI

To measure the overall genetic relatedness between any
two genomes, we used the AAI, a robust and universal
measure for these purposes (26). AAI was calculated as
the arithmetic average of the AAI of all RBM conserved
genes between two genomes. By comparing the AAI
values among genome pairs grouped at different taxo-
nomic ranks (e.g. phylum, class), it became evident that
phyla, genera and species are clearly distinguishable from
each other but that was not the case for the remaining
taxonomic ranks, which overlapped extensively
(Figure 2; see also Results section). Therefore, MyTaxa
considers only these three taxonomic ranks when classify-
ing query sequences that represent novel (uncharacterized)
taxa; for sequences representing characterized taxa, all
available taxonomic ranks for the matching taxon are
provided in MyTaxa’s output.

Gene cluster parameterization

We quantified the classifying power of each gene cluster at
each of the three taxonomic ranks. The classifying power
was defined by: (i) how well the gene separates intra-group
members from inter-group ones based on the degree of
sequence conservation (measured by D). For instance, the
16S rRNA gene is highly conserved and thus can resolve
well the phylum and genus levels but poorly the species
level; several rapidly evolving protein-coding genes resolve
well the species and genus levels but poorly the phylum
level (e.g. permissible mutations are saturated at the
phylum level). And (ii) how consistent the gene phylogeny
is with the species phylogeny, the latter approximated by
the AAI distance tree (measured by M; Figure 1, box A).
To quantify D, the identities (or distances) among all

gene sequences of a gene cluster were calculated in a pair-
wise mode and categorized into ‘intra-group’ (the two cor-
responding genomes that encode the genes were assigned
to the same taxon) and ‘inter-group’ (the two genomes
were assigned to different taxa). The distributions of the
distances of the two categories were then estimated by a
kernel density estimator with a Gaussian kernel function
using bandwidths selected by Scott’s rule (28). Therefore,
the classifying power of a gene cluster at a specific
sequence similarity level could be quantified as the differ-
ence between the inter-group and intra-group pair-wise
distance distributions (Figure 1, box B).

To quantifyM, first all possible triplets from all genes in
a cluster were generated, and then for each triplet, a
phylogenetic tree was constructed using FastTree (29)
based on the MUSCLE (30) alignments of the gene
sequences (default settings were used for both algorithms).
Each triplet tree was compared against the corresponding
species tree constructed based on AAI values. Therefore,
the triplets were either ‘concordant’ (tree topology consist-
ent with species tree), or ‘discordant’ (topology inconsist-
ent with species tree). Hence, the degree of gene cluster c
being consistent with the species phylogeny at taxonomic
level t is defined as the percentage of concordant triplets
among all possible triplets (Figure 1, box B; see
Supplementary Material for the detailed mathematical
formulations for M and D). For 40 gene clusters that
had >5000 members, it was computationally prohibitive
to exhaust all possible triplets among the members. We
employed a Monte-Carlo method to estimate theM values
for these gene families (see Supplementary Material for
more details).

Classification step and likelihood score calculation

For an unknown query sequence, MyTaxa gathers various
pieces of information (i.e. matching genes and genomes,
percentage identities, bit-scores of matches) from a simi-
larity search of the gene sequences encoded on the query
against a reference database. For practical reasons, only
the top N matches of a gene are used (we recommend
N=5, see below). For every match of a gene encoded
on the query sequence, MyTaxa calculates the likelihood
that the query sequence could be assigned to the taxon
that encodes the matching gene, using the bit-score of
the match and the (pre-computed) weights for the gene.
The weight ranges [0, 1], and it is a linear integration of
M and D using a weight vector (details in the following
section). Subsequently, the weights of all matches to genes
of the same taxon are summed and the likelihood that the
query sequence originated from that taxon is calculated as
the percentage of the total weight for all matching taxa,
i.e. (sum of weights for one taxon)/(total weights for all
matching taxa). Note that if the query sequence encodes
multiple genes and these match genes of the same taxon
during the similarity search, the taxon is supported
by multiple matches and hence, receives a higher
fraction (and thus, likelihood) of the total weight of all
matching genes (see Supplementary Material for more
details).

If the top-scoring taxon at a given rank passes the like-
lihood score cut-off (see also score cut-off estimation
below), MyTaxa predicts the query sequence to belong
to this specific taxon and moves to the lower rank (if
any) and calculates the likelihood score for this rank in
a similar fashion. MyTaxa continues this procedure until

Figure 1. Continued
rank that the taxon encoding the matching gene sequence is assigned to. If different genes of a query sequence or matches of a single gene suggest
different classifications (i.e. matching taxon differs), each classification receives a likelihood score by merging the identity of the match and the
corresponding D and M weights. If the total likelihood score of a classification (from the sum of the likelihoods of each match that supports the
exact same classification) is below a minimum threshold, the classification is discarded. MyTaxa reports the classification that receives the largest
likelihood score above the threshold at each taxonomy rank, together with its likelihood score (marked in red in box D).
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either it reaches the lowest rank possible or the score falls
below the threshold.

Weight optimization based on a grid search

D and M weights were generated independently and thus,
could not be integrated directly. To find the optimal com-
bination of D and M, we defined (wD, wM) as the relative
power of these two parameters, and the combined weight
was W ¼ wDD+wMM: The sum of wD wM should equal 1;
therefore, we only need to optimize the algorithm per-
formance over one of them, e.g. wD. A grid search was
employed for this purpose and the 1000-bp query dataset
was used. The dataset originated from available genomes
(see below) and thus, its composition was known. For
each possible (wD, wM) pair (wD was set to be 0.05, 0.1,

0.15, . . . , 0.95), we sampled 10% of the 1000-bp test
dataset at random ten times (replicates) and make
MyTaxa assignments. The assignments were evaluated
by their accuracy (sensitivity and specificity analysis),
and the corresponding weight pair with the highest
accuracy was selected.

Impact of the number of matches and score cutoffs on
classification accuracy

In MyTaxa, the top N numbers of matches of genes are
used in predicting the taxonomic identity of the query
sequence. When N=1, MyTaxa is equivalent to a
weighted LCA algorithm; and when N=1, MyTaxa
considers all matching taxa in the reference database. It
follows that the larger the N value the larger the CPU and
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Figure 2. Relationships between taxonomic designations and genome-aggregate average AAI. The taxonomic designations of 410 fully sequenced
genomes were compared to identify the lowest taxonomic rank shared by each pair of genomes [410� (410 – 1)=167 690 pairs, in total], essentially
as described previously (27). For each taxonomic rank (figure key), the corresponding line shown represents the distribution of the 16S rRNA gene
identity (top) and AAI (bottom) values among all genomes grouped at the rank.
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memory requirements. The choice of N has a complicated
impact on prediction accuracy, and for practical reasons,
we have tested N=1, 2, . . . , 10, and found that for most
cases, N=5 offers optimal performance (Supplementary
Figure S1). Similarly, we evaluated the impact of likeli-
hood score cutoffs on accuracy. We found that 0.5 usually
provides the best performance (Supplementary Figure S2).

Comparisons against other tools

All comparisons against other classification tools were
based on the following datasets. The in silico query
datasets were composed of different combinations of
1687 draft microbial genomes, which were downloaded
from NCBI’s ftp site in February 2012 (GenBank release
188). A custom Perl script was employed to randomly
sample pieces of sequences from the drafted genomes at
designated lengths (e.g. 100, 800 bp; see Supplementary
Table S1) with simulated 1% sequencing error. The 1480
completed genomes available in GenBank release 188 were
used as the reference database to calculate the offline par-
ameters for MyTaxa, following the same procedure as
described above. MyTaxa was subsequently applied on
the in silico query datasets using default settings, i.e.
score cutoff: 0.5 and number of hits to use: 5. Publicly
available tools (NBC, MEGAN4, RAIPhy) were also
trained on the same reference database as MyTaxa (1480
completed genomes) before applied to the (same) query
datasets, using recommended or default settings. Note
that MyTaxa analysis of real metagenomes was based
on the indexed database derived from GenBank release
196, which was 10.9% larger than release 188. Also note
that the PhyloPythiaS webserver requires, by default, at
least three genomes available in a taxon for model con-
struction. It was trained based on GenBank release 184
(1332 genomes), and it is not recommended for sequences
<1000 bp. For MG-RAST, it was not possible to train the
underlying algorithm on our reference database.
Therefore, the results of the latter two tools may not be
directly comparable to those of MyTaxa and other tools.
The sequences in the query datasets were labelled

‘known’ or ‘unknown’ depending on whether or not a
homologous sequence from the same species was available
in the reference database. The taxonomic assignment of a
‘known’ sequence by MyTaxa or another tool was
denoted as ‘true prediction’ (TP; predicted taxon
matches the actual taxon), ‘wrong prediction’ (WP; pre-
dicted taxon does not match the actual taxon) or ‘false
negative’ (FN; predicted as ‘unknown’); while the assign-
ment of an ‘unknown’ sequence was denoted either ‘false
positive’ (FP; predicted to match a specific taxon) or ‘true
negative’ (TN; predicted as ‘unknown’). Accordingly, the
sensitivity (i.e. normalized fraction of total sequences that
were TP or TN) and the specificity (i.e. normalized
fraction of total ‘known’ sequences that were TP) of the
algorithm at a given rank was defined in a categorized
fashion, which essentially is a weighted performance of
the algorithm over all taxa on that rank, including
known and unknown (see Supplementary Material for
more details).

Degree of novelty of the query dataset

To test the impact of the degree of novelty of the query
dataset (defined as the percentage of query sequences
originated from taxa that are ‘unknown’ to reference
dataset) on the performance of MyTaxa, the following
approach was employed. The 8942 available genomes
from GenBank release 196 were categorized into low,
medium and high abundance based on the number of
genomes available for the species, genus and phylum
that the genomes are assigned to according to NCBI’s
taxonomy (see Supplementary Figure S7 for details on
what number of genomes was used as threshold for each
taxonomic rank). These genomes were sampled at
random, as described above for the in silico query
metagenomes, keeping the relative abundance of se-
quences from each of the three categories roughly the
same to ensure a fair comparison among the three
categories (Supplementary Table S4). For each resulting
query dataset, a custom reference database was generated
using all genomes (complete and draft) but those used to
construct the query dataset. We removed increasingly
more genomes and used the remaining genomes for par-
ameter training so that the novelty of the query dataset
relative to the reference database ranged from 2 to 54%
for each of the three different taxonomic ranks evaluated
(Supplementary Table S4).

Analysis of real metagenomes

The human stool data were downloaded from the HMP
Consortium webpage (www.hmpdacc.org; SRA accession
numbers SRS011405, SRS011529 and SRS011586). The
biogas-producing metagenome was downloaded from the
FTP site as documented in (31). The gene sequences on the
scaffolds were predicted using FragGeneScan (22) with
default settings, and were subsequently searched against
all genomes in NCBI using BLAT (23). The resulting data
were used for taxonomic assignment of the scaffolds by
MyTaxa, based on default settings. Trimmed paired-end
reads were mapped onto the scaffold to calculate the
coverage (in situ abundance) of the corresponding popu-
lation/genotype using BLAT with default settings and a
minimum cut-off for a match of 50 bp aligned length, 97%
nucleotide identity and 1e – 10 e-value. Taxon abundance
was estimated using the percentage of total reads mapping
on all scaffolds assigned to the taxon, normalized to the
average genome size of the taxon reported in the literature.
For comparison (e.g. Figure 6), the relative abundance of
reference genomes based on the number of paired-end
reads mapping to available genome sequences were
directly obtained from the HMP consortium webpage
(www.hmpdacc.org/HMSCP).

RESULTS

Standardizing novel taxa based on average AAI

For reliable and high-throughput taxonomic classification
of unknown sequences, it is essential to have a robust and
standardized reference taxonomy system. The current
taxonomic system, especially the ranks higher than the
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species rank, is primarily based on the grouping patterns
of the 16S rRNA gene phylogeny but no standards exist
on the degree of genetic relatedness of the organisms
grouped at different ranks. Accordingly, adjacent ranks
are highly overlapping with this respect. For instance, or-
ganisms representing different species of the same genus
are often (30% of the cases examined, on average) as di-
vergent from each other as many genera of the same
family are (32). These inconsistencies can complicate taxo-
nomic identification of unknown sequences. Indeed,
several commonly used approaches including
PhyloPythiaS and MEGAN have significantly lower spe-
cificity above the species level (13).

To examine in depth the inconsistencies in the current
classification system, we analyzed 400 closed bacterial
genomes from which we exhausted all possible genome
pairs using the AAI to measure the genetic relatedness
among the genomes (26). Our results confirmed previous
findings (32) that high overlap exists not only among
adjacent ranks (e.g. phylum versus domain), but also
revealed that the species, genus and phylum ranks are
rarely overlapping, i.e. the inter-taxon divergence is typic-
ally higher than the intra-taxon diversity for these three
ranks (Figure 2). In particular, organisms grouped at the
‘species’ level typically show >85% AAI among them-
selves and are clearly distinguishable from those grouped
at the genus (showing 60–80% AAI) and the phylum levels
(showing <45% AAI). MyTaxa essentially employs these
AAI standards and examines the degree to which an indi-
vidual gene reflects the genomic AAI (see Materials and
methods section for details), to determine the taxonomic
rank of a sequence representing a novel organism, i.e. a
species, genus or phylum, with the following adjustment.
For novel species, a cut-off of 95% AAI (instead of 85%
AAI from Figure 2) was used because this was found to
better represent recently described species, which are, in
general, more homogenous than older species designations
included in our analysis (33). Also note that the 45% AAI
cut-off encompasses deep-branching organisms that a
(future) detailed taxonomic analysis may in fact assign
to (new) deep branching classes or even domains as
opposed to phyla; we refer to all these cases as phylum-
level lineages, or just phyla, for simplicity. Species, genera
and phyla also represent the three most important ranks
of prokaryotic taxonomy. Therefore, MyTaxa does not
consider the remaining ranks of the taxonomy (family,
order, etc.) when classifying novel taxa but these ranks
are available for organisms assigned to known species,
genera or phyla.

Computing the weights of the classifying power of each gene

To determine the weights of each gene, we built clusters
for all genes present in all completed and draft bacterial
and archaeal genomes as of June 2013 (release 196;
n=8942). We determined the classifying power of each
gene cluster by comparing how well the identity between
two genes of the cluster reflected the taxonomic rank of
the genomes encoding the genes, separately for each of the
three taxonomic ranks considered. The idea is analogous
to the use of AAI above to examine overlap between the

taxonomic ranks (e.g. Figure 2), applied to individual
genes. A second weight was calculated for each gene
cluster based on how frequently the ortholog gene phyl-
ogeny deviates from the species phylogeny, the latter
approximated by the AAI-based tree, due (primarily) to
HGT (Figure 1). The weights were stored in a structured
database, and the preceding analysis is referred to as the
‘offline’ part of MyTaxa (external users do not have to
repeat this part). For the ‘online’ part, an external user
submits a file that contains the results of a search, by
BLAST, USearch or other algorithm, of the query
sequence against the reference database of gene clusters.
In fact, the search is not necessary to be against MyTaxa’s
reference database as long as the input file contains the
accession number of the best matching gene(s) in
GenBank database and the AAI of the match. MyTaxa
then employs a maximum likelihood analysis of the pre-
calculated weights for the gene cluster that provided the
best match of the query sequence and the identity of
the best match to determine the taxonomic identity of
the query sequence and provide a statistical probability
for the assignment (Figure 1). Therefore, the most com-
putationally intensive part, i.e. to update the weights of
genes, is calculated offline once or twice a year, depending
on the number of new genomes sequenced; and MyTaxa
requires significantly lower computational resources
during the online part of the analysis, comparable to
other homology-based methods (see also below). For
instance, the online part of MyTaxa can be run on a
personal laptop with input sequences in the order of
hundreds of megabyte to gigabyte in size.

MyTaxa’s performance

We evaluated the performance of MyTaxa against that of
other existing tools based on the following approach. For
classifying sequences that represent organisms present in
the database (100% AAI match) or close relatives of these
organisms (e.g. >95% AAI for organisms of the same
species), the algorithm should (correctly) identify the
sequence to the lowest level available. The latter was typ-
ically the species level, unless the reference organism has
not been classified at the species level yet. For sequences
representing, for instance, an unknown (novel) genus of a
known phylum, the algorithm should ideally identify the
correct phylum, predict the phylum as the lowest taxo-
nomic rank and denote it as a novel genus; similarly for
novel phyla and species. Based on this framework, we
compared the performance of MyTaxa with other avail-
able tools on both in silico generated (mock) and well-
characterized, real metagenomes.
To prepare in silico generated test datasets, 1687 avail-

able draft genomes were sampled, at random, to produce
six test datasets, each composed of sequences of different
length, ranging from 100 (simulating Illumina reads) to
500 (simulating Roche 454 Titanium FLX reads), 800
(simulating Roche 454 FLX+ reads), 1000 (representing
the average bacterial gene length), 1500 and 2000 bp (for
details see Supplementary Table S2 and Figure S3). These
sequences also had �1% (artificially introduced)
sequencing error, which simulated the error rate and
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types observed in the Illumina GA-II and Hi-Seq 2000
sequencers (34). From GenBank, 1480 completed
genomes served as the reference/training database to
build the gene clusters and associated weights for
MyTaxa and other tools, when appropriate
(Supplementary Tables S1 and S2). Thus, the sequences
in the test datasets were labelled ‘known’ or ‘unknown’
depending on whether or not a homologous sequence of
the same species as the draft genome was available in the
reference complete genomes and the algorithms were
evaluated on the number of correct assignments (predic-
tions) made.
For the homology-based algorithms, we ran a BLAT

(23) search of the gene sequences predicted on the six
query datasets by FragGeneScan (22) against the reference
database, and the search results were used as input for the
algorithms. For composition-based algorithms, the algo-
rithms were trained, when appropriate, on the same refer-
ence database described above and then applied on the
query dataset using default settings (see Materials and
methods section for details). To achieve a fair comparison
in terms of prediction accuracy given that composition-
based methods tend to classify more sequences compared
to homology-based methods (e.g. they do not depend on
the availability of a match of the query sequence against a
reference database), we split the input query sequences
into two categories: the first one included queries with at
least one significant match in the BLAT search (category
A); the remaining queries formed the second category
(category B). All methods were directly compared
against each other based on the first category while the
accuracy of the composition-based methods on the
second category was evaluated separately. The percentage
of query sequences assigned to the first category ranged
from 32.7 to 51.2% of the total test dataset, depending on
the dataset considered (Supplementary Table S2).
The results revealed that MyTaxa consistently outper-

formed other homology-based tools (Supplementary
Table S3 for all results; Figure 3 shows the results for
the 800-bp dataset as a representative example;
Wilcoxon rank test, P< 0.05). For instance, at the
species level (800 bp test dataset), it was, on average,
17.8, 6.9, 25.1 and 9.2% more accurate, i.e. more correct
predictions and/or fewer false predictions, than BH, LCA,
MEGAN4 and MG-RAST, respectively. Furthermore, as
the length of query sequences increased, the advantage of
MyTaxa was more pronounced (Supplementary Figure
S4). NBC provided more correct classifications
compared to the other composition-based methods, con-
sistent with previous findings (12). MyTaxa outperformed
NBC by 10.6, 11.2 and 17.0% at the phylum, genus and
species levels, respectively (average of category A se-
quences from all test datasets).
We also calculated the sensitivity (Sn; defined as the

normalized portion of sequences from known taxa correctly
assigned as known and the portion of sequences from
unknown taxa corrected assigned as unknown) and speci-
ficity (Sp; defined as the portion of sequences from known
taxa correctly predicted at the lowest rank possible) for all
methods (Figure 4; see Supplementary Material for the
mathematical formulations of Sn and Sp). MyTaxa

showed both high sensitivity and specificity in all three
taxonomic ranks evaluated, e.g. at species level it was on
average 5% more sensitive and 3% more specific than any
other tool. Moreover, the sensitivity and specificity of
MyTaxa did not seem to depend on the length of the
input sequences, while most composition-based approaches
showed strong length-dependent variance in both sensitivity
and specificity (Figure 4). Specificity and sensitivity
combined, the improvement provided by MyTaxa, e.g. at
least 3% more sequences correctly classified, was consistent
with the results shown in Figure 3 and represents substan-
tial difference compared to current practice for the field of
taxonomic sequence assignment (35).

The run-time of the homology-based algorithms was
also compared on a 2.4-GHz single CPU Linux node
with 8-GB RAM using the 1000-bp dataset. The time
required for the similarity search step was not taken into
account, since it was the same for all tools (representative
examples of the search time expected using different algo-
rithms are listed in Supplementary Table S5), and the
evaluation was limited to the time required to analyze
the processed results (‘ready-to-go’ input files).
Composition-based methods were not compared with
this respect since they are based on a different algorithm
strategy that does not include a similarity search step.
Overall, the comparison showed that the online part of
MyTaxa was as fast as, if not faster than, other
homology-based tools (Supplementary Figure S6); for
instance, it ran about two times faster than MEGAN4
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Figure 3. MyTaxa’s performance and comparison with other methods.
Each bar represents the relative distribution of the different types of
predictions (figure key) made by each of the methods evaluated
(x-axis), at each taxonomic rank considered (labels on top). FN, false
negative (sequence from a known taxon predicted as unknown); FP,
false positive (sequence from an unknown taxon predicted as known);
WPre, wrong prediction (the known taxon did not match the predicted
taxon); TN, true negative (sequences from an unknown taxon were
predicted as unknown); TP, true prediction (the known taxon
matched the predicted taxon). The results are based on sequences of
the 800-bp-long query test dataset that found a match against the ref-
erence database during the similarity search step (for the performance
of composition-based methods on the remaining sequences of the
dataset see Discussion section). Note that PhyloPythiaS (13) is not
recommended for query sequences <1Kb and taxa with less than
three reference genomes available, and RAIPhy does not provide
species level prediction; thus, the results of these two tools may not
be directly comparable to those of MyTaxa and other tools.
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(MEGAN4 settings were set to carry out taxonomic as-
signment only, not functional annotation of genes, in
order for the search time to be directly comparable to
that of MyTaxa).

To evaluate the impact of the degree of novelty of the
query dataset relative to the reference database on the
results obtained, i.e. the relative frequency of unknown
vs. known taxa, a series of in silico query datasets, with
novelty ranging from 2 to 54%, were constructed (for
details, see Supplementary Table S4 and Materials and
methods section). Not surprisingly, the degree of novelty
negatively impacted MyTaxa’s prediction accuracy
(Kendall’s tau test, P< 0.01). However, the impact was
rather minor, affecting �5% of the total query sequences
or fewer, for 500 bp sequences or longer, at all three taxo-
nomic ranks evaluated (Figure 5 and Supplementary
Figure S8). Other homology-based approaches
(MEGAN4, BH and LCA) showed larger decreases in
accuracy compared to MyTaxa on the same datasets
(Supplementary Figure S8). These observations suggested
that MyTaxa is a robust classifier.

For a real metagenome, the previously characterized
biogas reactor dataset (31), which consisted of 616 072
Roche 454 FLX reads (read length: 230.0±55.4 bp),
was used. MyTaxa, NBC, MEGAN4, MG-RAST and
RAIPhy were compared against each other based on
their classification results for each read of the
metagenome, while PhyloPythiaS was omitted from the
comparison due to the low number of reads classified at

the genus level (<5% of the total reads). MEGAN4
showed the highest dissimilarity compared to the results
of the other methods based on the (predicted) relative
abundance of the 21 most abundant genera in the
dataset (Supplementary Figure S9). MyTaxa showed
overall high similarity with NBC and MG-RAST.
However, several notable differences in accuracy
between the methods were also observed and were consist-
ent with the results from the in silico generated datasets.
For example, the genus Alkaliphilus was predicted to be
relatively abundant by MyTaxa (2.23% of total reads) but
not by NBC (0.34%) while Pseudomonas was predicted to
be very abundant by NBC (5.47%), but not by MyTaxa
(0.31%). Previous analysis based on manual inspection of
the coverage of large contigs assembled from these reads
revealed that the sample indeed contained >1%
Alkaliphilus metalliredigens and <1% Pseudomonas (31),
consistent with MyTaxa’s results.

Novel diversity revealed in the human microbiome

We also evaluated MyTaxa’s ability to identify novel taxa
using several metagenomes that were made available as
part of the Human Microbiome Project (HMP). HMP
data were chosen for this purpose because many isolate
genomes have been obtained from the same samples;
hence, the novel taxa in these samples should be compara-
tively fewer compared to other samples and more
challenging to detect. The analysis was restricted to

Figure 4. Sensitivity and specificity of MyTaxa and comparison with other methods. Each line represents the sensitivity (y-axes; upper panels) or
specificity (y-axes; lower panels) of a tool (figure key) on different lengths of input sequences (x-axes). Sensitivity and specificity were defined as
described in the text.
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assembled scaffolds (not unassembled reads), which
provide more reliable results in terms of novel taxa detec-
tion due to the longer available sequences. Note, however,
that taxon relative abundance based on scaffolds may not
necessarily match that based on unassembled data in cases
where coverage is not uniform across the scaffold
sequence length and/or a reliable estimation of the
genome size of the target taxon/population is not available
(36). For simplicity, the results from three representative
stool HMP metagenomes, in terms of size and complexity,
which included assembled scaffolds, are reported here.
Each scaffold was classified by MyTaxa with default
settings, and the relative abundance of the corresponding
taxon was estimated based on the average number of reads
mapping (coverage) on all scaffolds assigned to the taxon,
essentially as described previously (36). The resulting
taxon abundance profiles were also compared to the
profiles available from the HMP website based on
paired-end-read mapping to reference genomes (www.
hmpdacc.org/HMSCP).
About half of the reads in each HMP metagenome did

not map to any reference genomes, which included 131
archaeal, 326 eukaryotic and 1751 bacterial genomes
originating from human samples, indicating that a large
fraction of the corresponding communities is still not well
represented by isolate genomes. The latter accounted, at
least in part, for the differences observed between the
taxonomic profiles of the samples based on MyTaxa
(Figure 6A) relative to those based on reads mapping to
reference genomes (Figure 6B). For instance, although
both methods identified Bacteroides as the most
abundant genus, MyTaxa found several abundant
genera to be represented by the assembled contigs that
were absent in mapping-based profiles. MyTaxa’s results
showed that an average of 8.7% of the total assembled
sequences assigned to each of the top 10 most abundant
genera were contributed by novel species, which are not
currently represented by genome sequences, draft or
complete. Especially in Prevotella genus, representatives
of which represent keystone members of the gut
microbiome (2), novel species represented 24.3% of the
total sequences assigned to this genus (Figure 6). To
confirm the latter findings, all reads of the metagenome

were mapped against available reference complete or draft
Prevotella genomes. This analysis revealed that about half
of the reads showed (only) 80–90% nucleotide identity to
their best-matching reference genome (Supplementary
Figure S10), indicating that they indeed represented
novel species within the Prevotella genus (32).
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Figure 6. Genus-level community composition and abundance of novel
taxa in the human microbiome based on MyTaxa and reference
genome-mapping analysis. (Upper) Relative abundances of genera
were obtained from the number of reads mapping to reference
genomes; these data were downloaded from the HMP webpage.
(Bottom) MyTaxa analysis based on assembled scaffolds, followed by
mapping of metagenomic reads against the scaffolds using BLAT (24)
to estimate relative abundance. The height of the bars represents the
relative abundance of genera in each sample (y-axis), and the top
twenty most abundant genera (x-axis) according to each method are
shown. The percentage of classified or mapped sequences in each
sample is represented by the horizontal bars. For MyTaxa, the top
five most abundant genera were further analyzed for the degree of
novel species they encompassed, defined as the percentage of sequences
assigned to each genus that were not classifiable at the species level
(grey circles, averages of the three samples are shown).
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DISCUSSION

We have shown that MyTaxa accurately classifies at least
3%, and up to 25%, more query sequences compared to
other methods for sequences representing previously
described taxa, independent of the length of the sequences
(Figure 3 and 4 and Supplementary Figure S4 and S5).
The advantage of MyTaxa is rooted in the construction of
a likelihood framework that integrates the matches of in-
dividual genes with weights for the classifying power of
each gene to achieve a better prediction. This approach is
categorized into a broad genre of optimizations, often
referred to as ‘the wisdom of the crowd’. Indeed, a
greater advantage of MyTaxa over other methods was
observed when the query sequences were longer
(Supplementary Figure S4), presumably due to more in-
formation (genes) available. Accordingly, MyTaxa can
also facilitate taxonomic studies of whole genomes,
complete or draft and be complementary to 16S rRNA
gene-based classifications since it provides higher reso-
lution at the species level. MyTaxa has also a clear advan-
tage over other methods in identifying the rank of
sequences representing novel taxa due to the use of an
AAI-based framework that emerges from the current clas-
sification system but it is more standardized (Figure 2).
This is particularly useful to the study of communities
that are not well represented by reference genome se-
quences (the majority of microbial communities) and can
help identify abundant, and thus, presumably important,
members of the community that should be targeted for
single-cell or cultivation efforts. Indeed, MyTaxa
analysis of human microbiome samples revealed several
abundant (novel) species that are not represented by
genomes of isolates, despite the large number of isolates
sequenced as part of the HMP (2208 genomes used in this
article). For instance, although a large number of
Prevotella isolate genomes are available (50 genomes,
including draft genomes), MyTaxa suggested that several
key members of this genus are still awaiting genomic
characterization.

Despite the significant improvements achieved by
MyTaxa, assigning sequences at the species level remains
problematic; mostly due to the lack of representative
sequences for several species (e.g. Figure 4). However,
the recent developments in DNA-sequencing technologies,
especially single-cell approaches, has greatly increased
the number and phylogenetic diversity of available
genomes so that the reference genome database will not
represent such a major limitation in the near future. What,
however, will still represent a limitation for automatic,
high-throughput taxonomic identification are the
inconsistencies in the current classification system. While
we employed a standardized AAI-based system to deter-
mine the degree of novelty of a sequencing representing a
novel taxon, we relied on the existing system for sequences
representing previously described taxa. The weights of
gene clusters are expected to significantly improve if a
standardized system, which will limit overlap between
adjacent taxonomic ranks in terms of the genetic related-
ness of the grouped organisms, will become available for
previously described taxa. MyTaxa is also scalable to a

higher volume of input data in that the computational
demand for the online part of the algorithm represents a
linear function of the number of input sequences. MyTaxa
is not specific to the homology search algorithm used;
thus, if new faster algorithms become available, e.g.
BLAT (24), they can be easily compatible with MyTaxa.
One advantage of composition-based methods is that

they typically classify all input sequences, including
those that show no significant homology to the reference
database. However, the exact error rate of these predic-
tions remains unclear, although it is generally assumed to
be lower relative to that for sequences with significant
matches. Genes with no significant homology to known
genes are highly likely to represent taxon-specific func-
tions (and thus, are not useful for classification if related
genomes have not been already characterized) and their
evolutionary history is often inconsistent with that of the
genome (e.g. acquired via HGT) (37). For instance, in our
datasets, NBC’s accuracy on ‘unknown’ sequences was on
average 25% lower compared to those with matches in the
reference database, which was largely attributable to a
higher wrong prediction rate (Supplementary Figure S5).
Therefore, if classifying more sequences is more important
than high accuracy in the classifications, a hybrid
approach that combines composition- and homology-
based methods may be advantageous. Finally, a new
homology-based tool to profile microbial communities
was recently released, mOTU (38), which is essentially
based on AAI values of a small set of 40 universal genes
(as opposed to any gene in the genome used by MyTaxa).
Preliminary data showed that mOTU and MyTaxa
provide, in general, similar results for abundant taxa in
available HMP metagenomes, albeit MyTaxa is able to
detect a larger number of low abundance taxa, which
are poorly represented among the sequences of the 40 uni-
versal genes assembled from the metagenomes (but not
those of other genes in the genome), and provide a more
accurate assessment of the level of novelty of sequences
representing uncharacterized taxa due to its standardized
AAI-based classification system.
In addition to the applications mentioned above,

MyTaxa can also be used to assist studies that aim to
detect HGT between genomes or contigs assembled from
a metagenome and the genomes represented in the refer-
ence database, e.g. by scanning the query sequence in
windows of specific length and compare the taxonomic
affiliations of the resulting sequence fragments. It can
also assist in validating the taxonomic identity of contigs
binned into population genomes during metagenomic
studies, especially for populations related to previously
described taxa. Thus, MyTaxa can find several important
applications in microbial identification and diversity
studies and provide new insights into the highly complex
microbial communities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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